Quantum correlation exists in any non-product state
نویسندگان
چکیده
منابع مشابه
Quantum correlation exists in any non-product state
Simultaneous existence of correlation in complementary bases is a fundamental feature of quantum correlation, and we show that this characteristic is present in any non-product bipartite state. We propose a measure via mutually unbiased bases to study this feature of quantum correlation, and compare it with other measures of quantum correlation for several families of bipartite states.
متن کاملQuantifying non-Gaussianity of quantum-state correlation
We consider how to quantify non-Gaussianity for the correlation of a bipartite quantum state by using various measures such as relative entropy and geometric distances. We first show that an intuitive approach, i.e., subtracting the correlation of a reference Gaussian state from that of a target non-Gaussian state, fails to yield a non-negative measure with monotonicity under local Gaussian cha...
متن کاملInsulin resistance and coronary artery disease in non-diabetic patients: Is there any correlation?
Background: Cardiovascular diseases are the most common causes of death in the world and type 2 diabetes is one of them because it is highly prevalent and doubles heart disease risk. Some studies suggest that insulin resistance is associated with coronary artery disease in non-diabetics. The aim of this study was to evaluate the association of insulin resistance (IR) and coronary artery disease...
متن کاملQuantum State Diffusion and Time Correlation Functions
In computing the spectra of quantum mechanical systems one encounters the Fourier transforms of time correlation functions, as given by the quantum regression theorem for systems described by master equations. Quantum state diffusion (QSD) gives a useful method of solving these problems by unraveling the master equation into stochastic trajectories; but there is no generally accepted definition...
متن کاملNon-Markovian Quantum State Diffusion
A nonlinear stochastic Schrödinger equation for pure states describing non-Markovian diffusion of quantum trajectories and compatible with non-Markovian master equations is presented. This provides an unravelling of the evolution of any quantum system coupled to a finite or infinite number of harmonic oscillators without any approximation. Its power is illustrated by several examples, including...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep07179